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An alternative to the Hamilton-Jacobi approach in classical 
mechanics 

M S Marinov 
Institute for Theoretical and Experimental Physics, Moscow 117259, USSR 

Received 8 February 1978, in final form 3 July 1978 

Abstract. A time-dependent function o n  the phase space, the phase action, is introduced, 
which is related to the Hamilton principal function by means of the Legendre trans- 
formation. The phase action is the (unique) solution of the Cauchy problem for a first-order 
partial differential equation, analogous to the Hamilton-Jacobi equation. The result is a 
manifestly invariant phase-space formalism. General properties of the phase action are 
analysed; in particular, the symmetry under time inversion and the continuous group 
property. Some examples are considered: the anisotropic oscillator, free motion, the 
multi-dimensional rotator, and the Kepler problem in Fock variables. As application of the 
formalism. an invariant perturbation theory is developed. The relation to semiclassical 
methods in the quantum theory is briefly discussed. A generalised dynamics on a manifold 
with non-flat symplectic structure is considered in the appendix. 

1. Introduction 

The principles of classical dynamics are thoroughly investigated, and they are presented 
in a number of brilliant books (e.g. Goldstein 1957, Synge 1960, Lanczos 1962, Pars 
1964, Arnold 1974). It is known, in particular, that to formulate the dynamics one may 
start from the Hamilton-Jacobi equation 

aA/at + H(Q, aA/aQ; t )  = 0. (1.1) 

From any complete integral of this equation one forms the Hamilton principal function 
d(Q, qo; t ) ,  which is a special complete integral of (1.1). The trajectories are to be 
constructed from d,  solving the equations p o  = ad/aqo with respect to Q, and substitut- 
ing the result into P = a d / a Q .  The Hamilton equations of motion may be considered as 
those determining the characteristic curves in the phase space. If for each Q, qo and t 
one knows a trajectory q ( ~ ) ,  p ( ~ )  which satisfies q ( t )  = Q, q ( 0 )  = qo, the principal 
function is determined from the action integral 

In general, the dynamical equations with the two-point boundary conditions have 
several solutions, so the action (1.2) is a multivalued function. The action functional 
defined by meansof the integral (1.2) on aset  of phase-space trajectories q ( T ) , p ( ~ )  with 
ends on the hyperplanes q = q o  and q = Q is also a basis of the variational principle. One 
may interpret the Hamilton equations as the Lagrange-Euler equations for this 
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32 M S Marinov 

functional (the Livens theorem, presented by Pars 1964, ch. 26; this aspect was also 
discussed by Ray 1973). 

The theory may also be formulated based on the momentum characteristic function, 
which is related to the coordinate function d(Q, q o ;  t )  by means of the double Legendre 
transformation in both the coordinates Q and qo (Synge 1960, § 79). Moreover, the 
dynamics are invariant under the general canonical transformations of the phase space. 
The invariance is quite manifest in terms of the differential geometry (Woodhouse 
1975, Vinogradov and Kuperschmidt 1977),; however, it is hidden in the usual 
Hamilton-Jacobi formalism. Due to the boundary conditions, the principal function is 
a non-invariant solution of (1.1). 

We present here a modification of the Hamilton-Jacobi theory, which is invariant 
under linear canonical transformation. In particular, the coordinate-momentum 
symmetry is obvious. The considered analogue of the Hamilton principal function, the 
phase action, is a function on the phase space and is related to s4 by means of the 
Legendre transformation. The phase action is the solution of the Cauchy problem, so it  
is unambiguous and this fact is perhaps an advantage over the conventional theory. The 
phase action is intimately related to the Weyl formulation of quantum mechanics and 
this is the reason why it may be useful for the semiclassical approach. Besides, the phase 
action exists for any Hamiltonian, even if there is no Lagrangian (and no s4). An 
important example is the dynamics with anticommuting phase-space variables (Berezin 
and Marinov 1977). 

The present method is developed for a linear phase space. The geometry is not so 
simple if the configuration space is a non-trivial manifold. Starting from the Lagrangian 
approach, one gets a cotangent bundle phase space over the configuration manifold. In 
general Hamiltonian dynamics the phase space may be a manifold or even more 
sophisticated geometry. For instance, there are situations when the fundamental 
Poisson brackets (1.4) are not constants. Such theories are of special interest in view of 
the very important class of system described by singular Lagrangians, involving the 
Dirac brackets (Dirac 1964, Hanson et a1 1976). To abstract from the corresponding 
complications, we suppose that the dynamical system is embedded in R "  and do not 
consider the intrinsic formulation at present. 

In  § 2, the phase action is defined by means of the basic equation (2.3), and its 
general properties are deduced. Some specific soluble examples are considered in  the 
next two sections; the oscillator and other systems with quadratic Hamiltonians in 0 3, 
free motion on spherical surfaces in arbitrary dimensions in § 4. Perturbative expansion 
of the phase action is the object of § 5. The role of the phase action in quantum 
mechanics in view of the semiclassical methods is briefly discussed in  § 6. A more 
general construction of dynamics is presented in the appendix. This extension of 
classical mechanics may be instructive, even though the corresponding theory is not 
canonical. 

The notations are as follows: q ={sa},  LY = 1, . . . , f is the coordinate, p = { p a }  is the 
momentum, f is the number of degrees of freedom, x = (q, p )  = { x k } ,  k = 1, . . . , n is the 
vector in the phase space, n = 2f. The Poisson brackets for any two dynamical variables 
f(x) and g ( x )  (functions on the phase space) are written as 
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We also use the notations 

ak = a / a x k ,  V k  = w k [ a l ,  

- 1  - k m  k G = - W  w m l m = S i ,  

(x O X ' ) = G k l X k X ;  = q . p ' - p . q ' = - ( x ' o x )  

so the Poisson brackets are 

{f, g )  = -akf Vkg = VJ akg = -(vf vg). 

The phase-space trajectory x ( t )  is the solution of the Hamilton equations 

x = dx/dt = {H,  x} = V H .  

The time parameter is t or T. 

2. The phase action: general properties 

2.1. The definition 

The trajectory, starting at 6, i.e. the integral of (1.7) with an initial condition x(0) = 6 
may be represented in an implicit form 

xi(t) = 51 + ~ l m  a@(z ; t ) / a z m ,  2 = (x + 6112. (2.1) 

The function @ ( z ;  t ) ,  introduced in this way, is the basic concept of this work, the phase 
action. To find the trajectory depending on 6 and t, supposing that @ is known, one has 
to solve the algebraic equations (2.1) with respect to x. I t  is easily seen that the 
transformation &+x,  given by (2.1), preserves the Poisson brackets for any @. (In 
general, writing an automorphism of the phase space implicitly, like (2.1), x = 6 + V F  by 
means of a generating function F ( x , & ) ,  one may prove that the automorphism is 
canonical, provided that aF/ax = dF/a&). In proving the invariance of the Poisson 
brackets, { X k ,  x i }  = {&, ti}, one has to consider the resolvent matrix R i = a x k / d & ,  which 
is related through (2.1) to the second derivative of the phase action. Defining the matrix 
B: = W k m  a2@/azl az,, one may show that 

The Hamilton equations (1.7) are satisfied, if the function @ ( z ;  t )  solves a partial 

(2.3) 

So we have the standard Cauchy problem for the phase action, contrary to the Hamilton 
action. Its solution is unique, the fact is established in the theorem by S Kowalewskaya 
(see in Smirnov 1957). 

To learn the relation to the conventional approach, separate coordinates and 
momenta in equations (2.1) and write @ ( z ;  t ) = @ ( r ,  k ;  t ) .  Comparing (2.1) with the 
equations expressing the phase-space trajectory in terms of derivatives of the Hamilton 
action, one is able to show that d is just a Legendre transform of @: 

differential equation with the zero initial condition 

a@/at  = H ( Z  +;v@; t ) ,  @(z ; 0) = 0. 

d ( r + t p ,  r - t p ;  t ) =  kp -O(r ,  k ;  t ) ,  p = a@/ak. (2.4) 
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For the inverse transformation 

r = t(Q + q d ,  P = Q -40, 

k = a d / a p  = t(ad/aQ - ad/aqo)  = t ( p  + p o ) .  

The Legendre transformation is an evident reason for bifurcations, and from a unique @ 
one gets a multi-valued d. Equation (2.4) is in close analogy with the usual relation 
between the Hamiltonian and the Lagrangian, 2 ( q ,  q )  = p .  4 - H ( q ,  p ) ,  4 = aH/ap. The 
action d is the integral of 9 along the trajectory, the integral for @ is given by (2.12). 

In the following we assume that H is independent of t. 

2.2. Phase action at small times 

The phase action has a regular expansion in powers of t :  
m 

@ ( z ;  t )  = c @ & ) P I N ! .  (2.5) 

Recursive relations for the coefficient functions Q N ( z )  may be obtained from the Taylor 
expansion of the right-hand side of (2.3): 

N = l  

(2.7) 

where C2'' '"k = N ! / v l !  . . . V k ! ,  C$ is the usual binomial coefficient. Thus any @ N  is a 
sum of a number of terms that are products of N derivatives of the Hamiltonian H. The 
first terms in (2.5) are given by 

@ I =  H, 0 2  = H'HI = -H'H' = 0 ,  @3 + $HlmH1Hm, Q4 = 0 ,  
(2.8) 

where HI = V I H ;  @ 2  and Q4 vanish because of the antisymmetry of wlm. In  calculating 
higher terms a graphical technique may be useful. Each term in aN is pictured by a tree 
graph with N - 1 lines and N vertices, a vertex representing a derivative aMH/azM and 
having M legs. The lines on the graph represent the matrix U and are oriented. The 
same tree graphs arise in perturbation theory (0 5); they are like the Feynman graphs. 

@ 5  = &(8HkHk'H/,Hm"H, + 4HkHk'UlmHm"PH&p f Hk""HkHIHmH,), 

2.3. Time inversion 

I t  is seen from (2.1) that for fixed t 

X ( 0 )  = 2 -tw, X( t )  = z + $V@. 
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As the Hamiltonian is constant d o n g  the trajectory (for conservative systems), equation 
(2.3) is invariant under the substitution t + - t ,  @ +  -@, therefore 

@(r;  t )  = -@(r; - t ) ,  @ 2 M ( Z )  = 0. (2.10) 

Consider a reflection of the phase space, x + ux, where U is a matrix, anticommuting 
with w ,  and U' = 1. An example of such reflection is time inversion 4 + 4, p + - p .  If the 
Hamiltonian is invariant under the reflection, one may write, using (2. lo), 

H ( u x ) = H ( x ) ,  @(vz;  t ) = - @ ( ~ ;  - t ) = @ ( ~ ;  t )  

Under this condition not only @ Z M  = 0, but any graph with an odd number of lines 
vanishes identically. In particular, this relation is applicable to systems symmetrical 
with respect to time inversion. 

2.4.  Integral and the variational principle 

The solution of the basic equation (2.3) may be written as an integral along the 
trajectory 

@ ( z ;  t )  = 1 [ H ( X ) +  2(Z 0 2 ) - 2 ( x  0 2)] d.r (2.11) 
0 

where X(T) is the trajectory, satisfying the Hamiltonian equations, while Z ( T )  = 
~ ( X ( T )  +X(O) )  and Z ( t )  = r ;  the notation (1.5) is used. This representation is especially 
clear within a more general problem, considered in the appendix. Excluding Z ( T )  one 
may also write 

@(z;  t )  = [H(X) - f ( X  0 X ) ]  dT + (6 0 z )  (2.12) 

where 6 = X ( 0 )  = Z ( 0 )  and the trajectory X(T) is specified by the boundary condition 
X ( t )  + X ( 0 )  = 22. Evidently, (2.12) may be deduced from the usual action integral 
(1.2), integrating the term i ( p .  q )  by parts and basing it  on the relation (2.4). 

One  may consider (2.11) as the definition of a functional, depending on two 
trajectories, X ( T )  and Z ( T ) ,  with a single restriction Z ( t ) = z .  Then the Euler- 
Lagrange equations provide with the Hamilton dynamics, supplemented by the relation 
X = 2 2  and the initial condition X ( 0 )  =Z(O) .  The second variation of the functional 
(2.11) is 

82@ = [2(82 82) - 2 ( 8 x  82) $a2H(X)/dXk 8x1 8xk 8xi] dT. (2.13) 

Apparently it has no definite sign, so the equations of motion correspond to a saddle 
point in functional space. In this respect the situation is the same as in the case of the 
usual action functional (1.2), which has neither minimum, nor maximum on the real 
phase-space trajectory?. 

I' 

lor 

2.5. Continuous group property 

The Lie group property of the Hamiltonian action is expressed by the relation 

d ( q 2 ,  40;  ti + t 2 )  = d ( q 2 ,  41; t2)+&r8(qi9 40;  ti),  (2.14) 

+The remark is due to Hilbert, see Pars 1964, 5 26.3. 
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where the intermediate coordinate 41 is to be excluded from the condition 

a d ( q z ,  41; t z ) l d q 1  + a d ( q l ,  q o ;  t l ) laql= 0, (2.15) 

which means that the momentum is continuous at 7 = t l .  The corresponding property of 
the phase action is written as 

(2.16) @ ( Z ;  f l + t 2 ) = @ ' ( 2 1 ;  f l ) + @ ( Z 2 ;  t z )+4S(Z l ,  2 2 ,  2) 

where, with the notation (1.5), 

s(zl,z2,z)=;r(z1 o z 2 ) + ( z 2 ° z ) + ( z  O Z 1 ) I  (2.17) 

and the phase-space vectors z1 and z 2  are to be excluded from the relations 

21 = 2 -iV@(z2; t z ) ,  2 2  = z +;vqz1; t l ) .  (2.18) 

The clearest way to deduce (2.16) and (2.18) is to consider the geometry on the 
phase plane for one degree of freedom (figure 1). Generalisation to any f> 1 is 

Figure 1. Trajectory on the phase plane. An interpretation of the Lie group property of the 
phase action, given by (2.16). The point z is in the middle of the segment xox2. 

straightforward. The term k ( q l  -qo) in the relation (2.4) is the area of the rectangular 
trapezium ( q o ,  XO, XI, q l ) .  Therefore, the third term in (2.16) must be equal to the area 
of the triangle (XO, xl, XZ), or to the area of (z l ,  5 2 ,  z ) ,  multiplied by 4. The area of 
(zl, z2 ,  z)isgivenby(2.17),because(x.y)/2,definedin(1.5),isjustthe(*)areaof the 
triangle (0, x, y); plus for counter-clockwise orientation, minus for the clockwise 

equation (2.1), one gets (2.18). On the other hand, these equations are analogous to 
(2.15), stating that @ ( z ;  f 1 +  f 2 )  is stationary against variations of z l  and z2,  

d(@(zi) +4S)/dzl = 0, a(Q(2,) + 4S)/az, = 0. (2.19) 
One may verify directly that the right-hand side of (2.16) depends only on the sum 

t l  + t 2 .  One may also get (2.16), solving equation (2.3) with a non-zero initial condition, 
@ ( z ;  0) = @ ] ( z ) ,  and using the integral representation (2.12). 

orientation. I t  is seen from figure 1 that z - z1 = $(x2 -xl), 2 2  - z = z(xl 1 -xo). Using 

2.6. Energy representation 

If the Hamiltonian H is independent of t ,  the Legendre transformation is useful once 
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more, just as in the conventional formalism. Define the energy phase action, in analogy 
to the 'truncated' action in the Jacobi theory, 

n ( z ; E ) = E t - @ ( z ; t ) ,  E = a@./at. ( 2 . 2 0 )  

H ( z  - 4 V a )  = E, ( 2 . 2 1 )  

R ( Z ;  ~ ( 2 ) )  = o = afl/aE, E = H ( z ) .  ( 2 . 2 2 )  

It satisfies the partial differential equation 

and vanishes with its E-derivative on the 'energy shell' 

The  transformation ( 2 . 2 0 )  is, in general, not unique, and  O ( z ;  E )  is multi-valued, as in 
the Hamilton-Jacobi theory. It also has a quite similar geometric interpretation. Using 
( 2 . 1 2 ) ,  write the integral representation 

fl(z ; E )  = $ (X 0 d X )  - $ ( x ,  0 X I )  ( 2 . 2 3 )  

where the integration is along the trajectory lying on the energy shell H ( x )  = E ,  x o  and 
x 1  are the initial point and the final point on  the trajectory, z = + ( x o + x l ) .  In the case of 
one  degree of freedom, fl is the area of the segment limited by the trajectory and its 
chord (see figure 1). 

It is shown in 9 5 that if the system consists of two systems with no interaction 

I 

H ( x )  = H l ( X )  + H * ( X ) ,  w1, H21= 0, ( 2 . 2 4 )  

the total phase action may be obtained from the partial phase actions for the subsys- 
tems, 

( 2 . 2 5 )  

Using relations (5.4), from ( 2 . 2 5 )  a 'superposition principle' for the energy phase 
action, one  gets 

( 2 . 2 6 )  fib; E ~ + E d = f l l ( z ~ ;  E d + f l 2 ( z 2 ; & ) + 4 S ( z l ,  2 2 ,  z ) ,  

where 

H l ( ~ 1  -$Vfl1)  = E l ,  H2(22 -+Vi&) = Er, z1 + 570, = 2 2  - + V a l  = 2. 
( 2 . 2 7 )  

The analogy with the group property, given by ( 2 . 1 6 ) ,  is manifest. However, in this case 
E l  and E2 are not arbitrary, and may be found from equations ( 2 . 2 7 ) .  

3. Systems with quadratic Hamiltonians 

Apply the present formalism to a dynamical system with the Hamiltonian 
H ( x )  = + F k l X k X 1  -$(x 0 K x )  = ~ ( K X  1 0 x ) ,  K ,  I = w,,Fnl, (3.1) 

where Fk' are elements of a symmetrical 'frequency matrix', and we use the notation 
(1.5). Note that, because of the identity F T =  F, the matrix K anticommutes with 6, i.e. 
6 ' " K ;  = -K!,&"". By means of a canonical linear transformation the Hamiltonian 
may be reduced to a standard form. The  general classification of these forms was 
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elaborated by Williamson (1937), the results may be found also in the book by Arnold 
(1974, addendum 6). If F is diagonal and has positive eigenvalues, the system is an 
(anisotropic) oscillator; if some of the eigenvalues are zero, there is free motion in the 
corresponding coordinates. 

The equations of motion are linear 

X=Kx (3.2) 

and their solution is written as follows 

X ( t )  = = R(t )X(O) ,  R ( t )  = exp(tK). (3.3) 

Note that det R = 1 because Tr K = wImFml = 0. Evidently, the phase action is also 
quadratic, 

(3.4) 

In view of equation (2.3), the matrix B ( t )  satisfies the Riccati equation and may be 
related to the resolvent matrix R( t ) ,  

@(z; t )  = :(B(t)z 0 z). 

B = ( l - i B ) K ( l + ; B ) ,  B(0)  = 0, B = 2(R - 1)(R + l)-'. (3.5) 

Three particular applications of this general result are mfpecial interest. 

3.1. Isotropic oscillator 

The frequency matrix is unity up to a factor, while w 2  = -1; that is true for the usual 
(q, p) representation of the phase space. Now 

Fk' = K a k l ,  R : ( r )  = COS K f  + O k l  Sin Kf, 
(3.6) B:(t)  = 2wkI tan(Kt/2), ~ ( z ;  t )  = z 2  t an(~t /2) ,  

where K is the frequency. 

3.2. Free motion 

where M is the 'mass matrix'; a,  /3 = 1, . . . , f. In this caset 

(3.8) K 2 = 0 ,  R ( t )  = 1 + tK, B( t )  = rK, Q ( z ;  t )  = t H ( z ) .  

3.3. Rotation 

The rotation of the configuration space may be considered as the time evolution, 
induced by the Hamiltonian 

H ( x )  = OUPLa,(x), L a p  =qaP~-qppar (3.9) 

where 0 is the angular velocity matrix and Lap is the angular momentum. I t  is assumed 

t I t  is evident directly from equation (2.3) that for any H ( x )  = V ( p )  the phase action is also independent of q :  
@ = t V ( p ) .  The same is true for H ( x )  = V(Q): @ = rV(q) .  Note that the Hamilton action does not exist in this 
trivial case. 
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that 0 = -aT, so the rotation matrix D = exp(t0) is orthogonal. The phase action is 

(3.10) 

To conclude this section we present the solution of a more general problem: the 
non-conservative system with a variable frequency matrix and under the influence of a 
homogeneous external field. The Hamiltonian and the phase action are 

O(Z ;  t )  = rmP(t)L,&),  r = 2 ( 0  - I)(D + I)-'. 

H ( x ;  t )  = i (K( t )x  0 x)+  ( f ( t )  0 x), 

O ( Z ;  t, to)=i[B(t, r o ) ( z + b ) o ( z + b ) l + 2 ( b ~ z ) + ~ ( t ,  to). 
(3.11) 

Formulae (3.5) are valid, while 4 ( t ,  U), the matrix B(r, to) and the vector b(t ,  to) are 
obtained from the equations 

R = K ( t ) R ,  R(t0, t o )  = 1, B = 2(R - 1)(R + l)-'$ 

(3.12) 

4. The rotator and the Kepler problem 

A material point on a spherical surface is usually described by means of the free 
Lagrangian with the constraint q2  = a 2 ,  where a is the radius of the sphere. Start from 
another point and consider the Hamiltonian 

H = $ L ~ ~ L ~ ~  = + A ~ ,  (4.1) 

where Lap is the angular momentum (3.9) and 

A' = p 2 q 2  = ( p .  q ) 2 .  (4.2) 

The Legendre transformation to the velocities is ambiguous, because 
det(d2H/dpmdpP) = 0, and the constraint ( q .  q )  = 0 appears. The Hamiltonian is in a 
sense degenerate. A similar situation is investigated by Dirac (a review in Dirac 1964) 
for the inverse problem, constructing a Hamiltonian from a degenerate Lagrangian. 
However, we need not go beyond the framework of the phase space approach and do 
not discuss the Lagrange formulation here. 

The equations of motion are 

4 = q 2 P  - (P. 4149 d = -P24  + (P . q ) p  (4.3) 

and they have the solution 

q = a ( u  cos At + U sin A t )  

p = b[u  cos(& + e )  + U sin(At + e)]. (4.4) 

Here a,  b and 0 are constants, and U and U are constant orthonormal vectors, so that the 
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integrals of motion are written as follows: 
2 2  p . 4  = ab cos 8, 2 2  4 = a ,  P = b ,  

A = ab sin 8, Lap = A ( u , v ~  -U~U,). 
(4.5) 

As it is suggested by the power expansion ( 2 . 5 )  for the Hamiltonian (4.11, the 

(4.6) 

Dimensional analysis shows that the last equation has a solution in terms of a function of 
a single variable 

phase-space dependence of the action is given by a function of A, 

a4iat = t ~ ' [ i  + $ ( a 4 / a ~ ) ~ ] ~ .  W Z ;  t i  = 4 ( A ,  t ) ,  

w = At, 4 ( A ,  t )  = W w ) ,  F(0)  = 0, 

F' = i[l +i(F + wF')']', F'= dF/dw. 
(4.7) 

Solving the last equation for F+ w F '  one gets an ordinary differential equation of the 
Lagrange type (note that at positive w not far from zero, evidently, F '  > 0 and F > 0), 
which is reducible to quadratures. The resulting solution may be presented in a 
parametric form 

(4.8) 

The function F ( w )  is regular for 0 s s < sl, where s1 = 0.653 is the first positive root of 
the equation 

F' = &(cos s ) - ~ ,  F = 2 tan s -  wF ' .  2 w = 2s cos s, 

1-2s tan s = 0. (4.9) 

At s = s1 one has dw/ds = 0 and dF/ds = 0; this point corresponds to a cusp on the 
integral curve. In the complex w plane F ( w )  has branch points at w = w, = 
Ss3,(1+4s;)-', where s, are roots of the equation (4.9). Note that at imaginary s both w 
and F ( w )  are pure imaginary, while F' is real. 

The solution of the equations of motion, given by (4.4), may be obtained also from 
(2.1), so that 

where 

k = i ( p ( t ) + p ( O ) ) ,  r = ; ( 4 ( t )  +4(0) ) ,  A = A(r,  k),  
(4.10) 

= F + w F '  = 2 tan s. 

It  may also be seen that 2s = tA(4 ,  p )  = tA(r ,  k)/cos2 s. 

the f-dimensional dynamical system with the Hamiltonian 
Now consider the Kepler problem. I t  is known (see in particular Gyorgyi 1968), that 

H = -&g2/A2 (4.11) 

under the supplementary condit1b-n ( p . 4 ) = 0  is equivalent to a combination of 
negative-energy regions of the phare spaces for the (f- 1)-dimensional Kepler prob- 
lems with the Hamiltonians HK = P 2 / i m  - l /Q for various masses m and couplings 6. 
The constants of motion are given by (4.5). Only the states with 8 = &r are of interest 
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for the Kepler problem. The parameters m and 5 are related to the constants of motion 
for the Hamiltonian (4.1 l), 

m = a 2 b 4 / g 2 ,  5 = g 2 / a b 2 .  (4.12) 

The f-dimensional momenta p are the Fock variables, q are the canonical conjugated 
coordinates. The 'physical' momenta P,, v = 1, . . . , f- 1, are related to p by means of 
the stereographic projection, the relation between Q and q is more complicated. The 
explicit formulae as well as the references are given by Gyorgyi (1968). 

The equations of motion and their solutions are 

4 = g Z ( q 2 .  P -(P * 4 ) 4 ) / A 4 >  

q = a (U cos ~t + U sin et), 

p = b [ u  c o s ( ~ t + O ) + u  sin(Et+O)]. 

d = - g 2 ( p 2 .  - ( p a  q ) p ) / A " ,  

E = g2/A3,  (4.13) 

Proceeding along the same lines as in the case of the rotator, one gets for the phase 
action 

@ ( z ;  t )  = AF(w), (4.14) 

The solution is given by the parametric form 

w = gzt/A3, F' = -$[ 1 + (F - 3 wF')']-~. 

w = 2s(cos S ) p ,  F' = -4 COS' S, F = 2 t a n s + 3 w F t .  (4.15) 

In this case F ( w )  has no singularities on the real axis; w varies from 0 to cc and F ( w )  
from 0 to -cc when 0 s s < ST. 1 

5. Perturbation theory 

where A is a small parameter. Our purpose now is to expand the phase action in powers 
of A .  Having in mind the Lie group structure described in 0 2 ,  write 

@b; t)=@i(Zi;  f ) + @ 2 ( 2 2 ;  t )-4S(zi,  2 2 ,  21, (5.2) 

where the bilinear form S is given in  (2.17), and the variables z1 and 2 2  are functionsof z 
and t ,  to be found from the equations 

21 = 2 + i V @ 2 ( 2 2 ;  t ) ,  2 2  = 2 - t V @ ' l ( z l ;  t ) .  (5.3) 

With these definitions the following useful relations may be readily obtained: 

a@/at = aal/at + ao2/at, 

V@ = V@1+ V@2, 

where for each function we mean its partial derivatives with respect to its own 
arguments. Substitute the expression (5.2) into the basic equation (2.3) and note that in 
view of equations (5.3) 

(5.6) 2 + i V @  = 21 + i V @ l  = Z 2 + 3 7 @ 2 + V @ 1 .  
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I t  is natural to assume now that 
write 

is the phase action for the unperturbed system and to 

a@l(zl; t ) / a t  = H l ( Z l + $ V @ l ) ,  
(5.7) 

The variable z1 in the last equation is to be substituted as a function of z 2 + $ V @ 2 ,  which 
may be found from equation (5 .6) :  

a @ 2 ( ~ 2 ;  t ) / a t  = A H 2 ( Z 2 + $ V @ 2 + V @ 1 ) .  

The solution of this algebraic equation is evidently related to the phase-space trajectory 
starting at 6 and governed by the Hamiltonian H I  (cf equation (2.1)) 

The situation is shown in figure 2 .  Now (5.7) acquires the normal form of the phase 
action equation with a time-dependent Hamiltonian, 

a 

Figure 2. Motion for a Hamiltonian (5 .1 ) ,  Curve C i s  the phase space trajectory, curve A is 
a trajectory mastered by the unperturbed Hamiltonian HI and ending at the same point, 
curve B is a trajectory for the time-dependent Hamiltonian (5.1 1). 

If H2 is an integral of motion for the system with the Hamiltonian H I ,  {HI, Hz}  = 0, 
then there is no explicit time dependence in equation (5.11), G(5; t)=H2(5), and its 
solution is reduced to the standard problem with the Hamiltonian HZ 

Thus at A = 1 we get the result presented in equation (2.25). 
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I t  is evident that @z, as well as z -z l  and S in ( 5 . 2 ) ,  is proportional to A.  Using 
equation (5.11), one may calculate the expansion in powers of A for (cf (2.6)) 

(5.13) 

(5.14) 

where we use the same form as in equation (2.7), and G'i,.,'M = a'G(z; t ) /dzr,  . . .azr,. 
The functions d N  are obtained subsequently by means of integration in 1. The first 
terms are 

(5.15) 

Just as in 8 2.2, one may use a graphical technique. Any q5N is a sum of terms 
represented by tree graphs with N - 1 lines and N vertices. However, now any vertex 
depends on its own time, and one has to calculate the multiple integral in the times, 
having in mind a time ordering. If the unperturbed Hamiltonian H1 is quadratic in x 
(see § 3), the graphs are in close analogy to the Feynman graphs. The time dependence 
of G is due to the presence of the matrix R( t ) ,  given in (3.3), and we have 

G ( 6 ;  t )  = Hz(R(t)S) ,  dG/aSl= R:(t)  aHz/dxk. (5.16) 

Each leg of a vertex contributes a matrix factor R ( T ) .  One may redefine the graphical 
notations and assume that the vertices represent derivatives of the perturbing Hamil- 
tonian, aMHz/ax. . . ax, while the lines are associated with the propagator 

D k f ( T 1 - 7 2 )  = RP(Tl)wmnR;(72) = R P ( T 1 - 7 2 ) w m / .  (5.17) 

We have used here the general property w R  = R- 'w .  
A defect of the expansion (5.13) is that its convergence may depend on t. An 

example is a system containing non-interacting subsystems, when (5.12) is valid. In this 
case the expansion parameter in (5.13) is in fact A t ;  the expansion coincides with (2.5), 
and d N ( z ;  t )  = t N O N ( z ) .  A way to improve the convergence is to eliminate from H z  a 
function, constant along the trajectory X ( 6 ;  t ) ,  governed by HI. Instead of (5.1) one 
may write 

Wl, K l  = 0 ,  (5.18) 

choosing K ( x )  in such a way as to make the time average of Hk, which is just q51 in 

H = ( H ,  + A K )  + A ( H ~ - K )  = H ;  +AH; ,  
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(5.15), as small as possible at large t. As to the phase action for the new unperturbed 
Hamiltonian H i ,  one has to solve the basic equation (2.3) with the Hamiltonian K ( x )  
and then employ equation (2.25). Another way to modify the perturbative expansion of 
the phase action is to use repeatedly the generalised sum, defined in (5.2), instead of 
writing the series (5 .13)  directly. Future investigations will show whether such 
modifications are effective. To conclude this section, note that the expansion of the 
usual Hamilton action is a rather complicated procedure, which avoids the invariant 
formulation (see e.g. Sen Gupta 1967). 

6. Relation to quantum theory 

The phase action is of interest for quantum theory, because it gives the phase-space 
symbol of the Green operator in the semiclassical approximation. It is known that 
semiclassical methods are very fruitful in quantum theory (see for example an excellent 
review by Berry and Mount 1972). 

Formulation of quantum mechanics in terms of the phase-space symbols, invented 
by Weyl (1927) (see also Wigner 1932), is quite appropriate for the semiclassical 
approach, because the classical dynamical variable, corresponding to a quantal opera- 
tor, is just the limit h+ 0 of its symbol. The symbols are related to matrix elements of 
the operators by means of the Fourier transformation. In particular, one may write the 
kernel of the time-dependent Green function, 

(6.1) 

where the symbol is 

G(x; t )  = A ( x ;  f )  exp(-i4(x; t ) / h ) ,  

A and 4 are real functions. I t  is quite adequate to consider the phase 4(x;  t )  as the 
symbol of Schwinger’s quantum action. If 4 is known, the amplitude A is determined 
from the unitarity of Green’s operator. I t  may be shown that in the semiclassical 
approximation the function 4 is just the phase action, 

4(x;  t ) = @ ( x ;  t ) + 0 ( h 2 ) ,  

A ( x ;  t)=[det(l-B2/4)]”4+O(h2).  

The matrix B is given by 

B : ( x ;  t )  = v k  a‘@(x; t ) .  (6.3) 

For the case of a quadratic Hamiltonian (0 3) equations (6.2) are exact; quantal 
corrections do not arise; the matrix B does not depend on x and is presented in (3.4) 
(see also (3.12) for the time-dependent case). 

The equation (2.3) was first written by Berezin and Shubin (1972) in the context of 
the semiclassical approximation. The starting point was an integro-differential equa- 
tion for the symbol G(x; t )  representing the operator equation 

iri ad/at = &d. (6.4) 

In the limit h + 0, the integral expressing the operator multiplication in the right-hand 
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side is calculated by means of the stationary phase method and the result is two real 
first-order partial differential equations. One of them, for the phase, is the equation 
(2.3), the other, for the amplitude, is linear and may be integrated in closed form (6.2). 
To obtain the usual Green function one should substitute the result (6.2) into (6.1) and 
apply the stationary phase method once more. The Fourier integral is then reduced to 
the Legendre transformation for the exponent, providing the mapping (2.4). Thus the 
sum over the stationary phase points in the phase space is converted to the sum over 
classical trajectories in the coordinate space. The terms are of the form 
exp[id(ql, 4 2 ;  t ) / h  -iy.rr/2], where SP is the Hamilton action and y is interpreted as the 
number of caustics intersected by the trajectory. A presentation of the multi-dimen- 
sional stationary phase method and the corresponding relation between the Fourier 
transformation and the Legendre transformation are given in a book by Maslov and 
Fedoryuk (1976). Note that contrary to the Hamilton action SP the phase action (D is 
unique for fixed z ;  and there are no caustics in  the phase space, they appear when the 
trajectory is projected on to the coordinate space. Probably, it is not necessary to follow 
this line, involving new errors of order h2 in approximate calculation of the integral 
(6.1). In some applications the symbol is as good as the Green function. 

I t  is remarkable that some formulae of this paper are clearer in view of their quantal 
counterparts. For instance, equation (2.3) is related to (6.4), equation (2.16) is just the 
identity 6(tl + t 2 )  = 6(t2)&(t1), equality (2.25) is equivalent to 

The appearance of the term S(zl, z2 ,  z )  in (2.16), (2.25), (2.26) and (5.2) is due to the 
multiplication law for the Weyl symbols, while (2.18) or (2.19) arise from the stationary 
phase approximation. The fundamental equation of the perturbation theory (5.1 1) has 
its prototype in Dirac’s interaction picture. 

A concise review of the formalism of symbols, together with the relevant references, 
may be found in the appendiy to a paper by Berezin and Marinov (1977) (we use the 
same notations here). In that work an invariant form of the phase-space path integral is 
also presented: 

. I  

G ( z  ; t )  = j 1 Dx Dz exp( -; Io [ H ( x )  - 2(x. i) + 2(2. i)] d7) , (6.6) 

where the integration is over all continuous trajectories X ( T )  and z ( 7 )  in the phase space 
with the boundary condition z ( t )  = z .  This is in  contrast to the Feynman path integral 
with the action (1.2), where one should restrict the class of allowed trajectories, 
correlating the structure of q ( 7 )  and ~ ( 7 ) .  In the exponent of (6.6) we recognise the 
phase action functional (2.11). This form of the path integral suggests a method to 
quantise the generalised mechanics described in the appendix. Probably, one should 
consider the path integral involving the functional (A.5). A more detailed analysis of 
the problems mentioned in this section will be presented elsewhere. 

In conclusion, note that the phase action formalism may be immediately applied to 
the dynamics with anticommuting (Grassmann) variables, considered by Berezin and 
Marinov (1977, and references therein). Roughly speaking, it is sufficient to replace the 
skew-symmetrical matrix o by unity, and to write the usual scalar product i(x. y) 
instead of (x 0 y), defined in (1.5). Meanwhile, the conventional action formalism, 
apparently distinguishing the coordinate and the momentum, is not applicable to the 
Grassmann case. 
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Appendix. The generalised Hamilton-Jacobi equation and canonical dynamics on a 
manifold 

Consider a manifold with local coordinates zk, k = 1, . . . , n, and let @ ( z ;  t )  be the phase 
action describing the dynamics on the manifold. We start with the Cauchy problem for 
a partial differential equation, generalising (2 .3) ,  

a@/at = ~ ( a @ / a z  --f(z)j, @(z;  0 )  = 0 ,  ('4.1) 

where f(z) = { f k ( z ) }  is a contragredient vector field on the manifold and M(y)  is a 
regular function on the conjugate manifold. The way to find @ ( z ;  t )  is as follows 
(Smirnov 1957 § 114). Solve the set of the characteristic equations 

i l  = -aM(g -f(z))/dg', g' = ik afk/azr,  $ = g ' i l  + M ( g  - f ( ~ ) ) ,  ('4.2) 

z (0)  = l, d o )  = 0 ,  C#J(Oj = 0. ('4.3) 

with the initial conditions 

After the natural substitution y = g -f(z), the system is 

il = -dM(y)/dy ' ,  y '  = a l m ( Z ) i m ,  Y (0 )  = -f(O, 
('4.4) 

#J = y . 2 + f ( z ) i  +M(y) ,  

where aLm =df"/az,-df'/ar,. Suppose that the solution is z = Z ( c ,  t ) ,  y = Y(6, t ) ,  
then 

C#J = 9(6; t j  = [( Y +f(Z)) d Z / d t  + M (  Y ) ]  d7. (A.5) 1' 
To find the desired result, one has to express the initial point of the trajectory l through 
its end point z ;  @ ( z ;  t )  = 9 ( c ( z ,  t j ;  t ) .  

is constant, so that f is 
linear in z,  

f ' ( z )  = --talmzm, (A.6) 
(evidently, addition of a gradient to f(z) is of no importance). In this case one is able to 
exclude y from (A.4), y = Q ( Z  -472). If a is a non-degenerate matrix, one gets the 
standard Hamilton equations (1.7) with w = -4a-', 

x = 22 -i.= 2a-'y, x(0) = & = 6, H ( x )  = M ( a x / 2 ) .  (A.7) 

In this particular case the integral ( A S )  is rewritten as (2.11). 
In general, equations (A.4) describe the canonical dynamics on the manifold with 

non-flat symplectic structures. The general construction may be depicted in metaphy- 
sical terms. Two manifolds are involved. On one (the Heavens) the Law is established, 
written by means of the master function M(yj ,  which is an analogue of the Hamiltonian. 
On another (the Earth) the motion, represented by the function @ ( z ;  t ) ,  is observed. 
The correspondence is transferred by the mapping z +f(z). 

Assume for a moment that the skew-symmetrical field 
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